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Phase transitions in nonextensive spin systems
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The spherical spin model with infinite-range ferromagnetic interactions is investigated analytically in the
framework of nonextensive thermostatics generalizing the Boltzmann-Gibbs statistical mechanics. We show
that for repulsive correlations, a weak-ferromagnetic phase develops. There is a tricritical point separating
para-, weak-ferro, and ferro regimes. The transition from paramagnetic to weak-ferromagnetic phase is an
unusual first-order phase transition in which a discontinuity of the averaged order parameter appears, even for
finite number of spins. This result puts in a different way the question of the stability of critical phenomena
with respect to the long-ranged correlations.
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Discussions of nonextensivity in thermodynamics go backand this is the case discussed in the present paper. It has been
to the 197091]. Recently, nonextensive theories have be-shown[11] that the TGSM retains much of the formal struc-
come extremely important in several areas of phy§iJs ture of the standard theory. Many important properties, such
However, there are still very important questions that shouldas the Legendre transformation structure of thermodynamics
be addressed. The influence of the nonextensivity on phasend theH-theorem(macroscopic time irreversibilijyhave
transitions and their trace in finite systems is certainly a fieldbeen shown to be invariant. Considering the fact that the
that should be further exploref]. In the collisions of essence of the second law of thermodynamics is concavity
atomic nuclei or charged atomic clusters, a highly excitedsee Ref[13]), the mentioned properties of this entropy al-
nonequilibrium transient system is formed, which at a latedow us to say that there are no problems with this law in
stage of the reaction, approaches an equilibrium and split§GSM.
into many fragment$4,5]. Observed signatures of criticality The TGSM is relevant if the effective microscopic inter-
in these processes depend strongly not only on strong repukctions are long ranged and/or the effective microscopic
sive Coulomb interactions but also on the way the excitednemory is long ranged and/or the geometry of the system is
transient system is formed in collisiofi§]. The fragility of  fractal[9,12,14. In the superadditive regime (1q>0), in-
those signatures manifests the inherently nonextensive chadependent subsysten#s and B will tend to join together
acter of these “critical phenomen@7]. The general problem increasing in this way the entropy of the whole system. On
of the relation between critical behavior in small nonexten-the contrary, in the subadditive regime-{<0), the sys-
sive statistical systems and the phase transitions in the thetem increases its entropy by fragmenting into separate sub-
modynamical limit is investigated here using the Berlin-Kacsystems. These ideas are in agreement with the results of
model(BKM) [8] in the framework of the Tsallis generalized Landsberget al. [10,15 The subadditivity of entropy is ex-
statistical mechanicéTGSM) [9]. pected when long-range repulsive interactions and correla-

The TGSM was inspired by earlier works on nonextensivetions and/or long-range memory effects are present in the
thermodynamicg1]. It is based on an alternative definition system[12,15. This is in particular the relevant limit of the
for the equilibrium entropy of a system whostn micro-  fragmentation of electrically chargg@ff-equilibrium) sys-
scopic state has probabilify [9] tems, such as those formed in the collisions of atomic nuclei

or sodium clusters.
R The BKM was introduced as an approximation of the
l—z p Ising model. In the BKM, the individual spins are taken as
Sy=k : , 2 p=1, k>0, (1)  continuous three-dimensional variables, but the rigid con-
q-1 i straint on each local spin variab® (where S;==*1/2) in
Ising model, is relaxed and replaced by an overall spherical
andg (entropic index that is determined by the microscopicconstraint:
dynamic$ defines a particular statistics. In the lingjt=1,
one obtains the usual Boltzmann-GiblG) formulation of
the statistical mechanics. The main difference between the
BG formulation and the TGSM lies in the nonadditivity of =4
the entropy. For two independent subsystemB, such that
the probability ofA+ B is factorized intopa,g=papPs, the
global entropy verifies: Sy(A+B)=S;(A)+S4(B)+(1  for N spins. In the present paper, we consider the infinite-
—0)S4(A)Sy(B). The entropyS, has definite concavity for range version of the BKM where all pairs of spins interact
all values ofg. In particular, it is always concave fa>0,  with the same strength, according to the Hamiltonian:

N
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J J (1-B(L-q)E)*"9
H=-3 2 SS—5- 3 Pr.a(E)= > : ©)

(.j) q
if 1 —B(1—qg)E>0, and 0 otherwise. The partition function

The sum in Eq(3) runs over all different pairs of spin indi-
a3 D P Z, is defined by the normalization qfy 4

ces (,j). The constant term-J/8 is added to fix the origin
of the energies at the vanishing total magnetizatibfs,
=0. The normalization of the ferromagnetid*0) ex- f In(E)pn,o(E)dE=1. @)
change energy a¥N, ensures finiteness of the energy per

spin in an infinite system. The value of this energy S’hOUIdAII ensemble averages are then defined with respect to the
depend on the volume of the system.

. g )
One defines the magnetization per site py N~13,S; . gltr?pi rlyihr:ao;rcsgeg dp(;(r)g:rbngf%gi??s(E?v[eln6]t.) For ex
Because of the inequality>(S;)?< NES,Z, the value ofy is Pie, 9 P g y

contained in between- 1/2 and+ 1/2. The phase of the sys-

tem will be characterized by the average valuezdf m? f 7°(E)py o(E)gn(E)dE

=(7?), where the brackets - -) denote the ensemble aver- ma=(n?)q= : (8)
age at a given temperature. The square roohdplays the j pﬁllq(E)gN(E)dE

role of the order parameter.

The Hamiltonian of BKM may be expressed as a function . . . . .
y P Replacing the integration variabieby 7, the value ofm, is

of #:
2_
n N \ mg=13/l1, 9
T2 @ ith the integrald ¢ defined by
and this allows us to obtain the degeneracy factor of the (" s Bk Nt 2\N/2—1
i - - - s | 7m|1-—57 (1-47°)™ *dn, (10
macroscopic states defined by the fixed number of shins 2

and the fixed energ¥. The number of such states in the

N-dimensional spin space is the volume of the intersectiomand x=min(1/2,/2/8J«) because of Eq(6) and|»|<1/2.

of the hypersphere(2) and of the hyperplaneX;S;  The fundamental parameter of the nonextensive generaliza-
=(—2NE/J)¥2 This intersection is a sphere of radius tion of the BKM is

(N/4+ 2E/3)¥?in the (N— 1)-dimensional space and its vol-

ume is gn(E) =an(1/4+2E/IN)N?71 whereay, is a nu- k=N(g—1) (11)
merical factor that depends only on the number of sfsgs-

tem mass Knowledge of this statistical weight, in addition instead ofg— 1. This parameter, which will be called here-
to the energy given by Eq4) allows us to compute all after the out-of-extensivityOE) parameter, allows us to de-

thermodynamic quantities of the equilibrated system. fine the thermodynamic limit of the system in a natural way.
In BG statistical mechanics, the partition function is writ- Let us compare systems of different masbesuch that the
ten in terms of they distribution as OE paramete(1l) remains constant. In the relatiof® and
(10), one may recognize the equivalent of a free energy per
1/2 site
2o | n exi-Ni(nldn, ©
0 fo(m)=In(1—BIk7n?/2)/k—In(1-47?)/2, (12
The constanf, is 2°~NJNay exp(—3J/8) and which is independent dfl whenk is a constant. Existence of
this free energy per spin implies, in turn, the existence of the
f(9)=—BIn*—(1-2IN)In(1—47%)/2 thermodynamic limit in the system. For a fixed value of the

OE parameter, the interesting valuesgopproach 1 as the

is the free energy per spin. In the limit—oo, this function =~ number of spins increases.

does not depend oN, which ensures the existence of the =~ When the number of spir¥ is finite, the integral$s may
thermodynamic limit. Since this free energy is analytical inbe expressed by the hypergeometric functions. At high tem-
the variable 7, f(5)=[4(1-2/N)—pBJ]7%/2+8(1  peratureg3J<8/k, the upper bound for in Eq. (10) is 1/2.
—2/N) *+ - - -, with a positive* term and a change in sign The integrand in this case is always finite, anglis a posi-

of the z? term at the pseudocritical point80). n=4(1 tive decreasing function of the temperature. Moreovek if
—2/N), the infinite system undergoes a second-order phase 2/(1—2/N), then for all these temperatures one i@k
transition at the critical temperaturggd).=4. The critical <4(1—2/N) and my1/JN, similar to the standard para-
exponents are given by the regular Landau-Ginzburg mearmagnetic phase. In particular, wh@d— 8/« by lower val-

field theory for the magnetic systems. ues, then the limiting value im,=N"4 k/{2(k—2)}]¥2
In the TGSM, the equilibrium energy distribution is given On the other hand, ik<2/(1—2/N), then this 1{/N behav-
by [9] ior of my holds only whengJ<4(1—-2/N). For higher val-
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FIG. 1. Plots of the averaged magnetization of the infinite-range Fig. 2. ppase diagram of the infinite-ranged BKM ferromag-
BKM in the TGSM for N=50 interacting spins ané=2«c,&kc,  petic spin model in the TGSM at the thermodynamic limit. The
Kc/2. K is the value of the OE parameter for which the pseudocriti-po|q.face solid curve shows the line where the first-order phase
cal point of the standard second-order phase transiteere,  yansition between paramagnetic and weak-ferromagnetic phase
(BJ)cn=3.84 and the critical point for the nonextensive BKM annens. For @ k<2, the system undergoes two distinct second-
((BJ)c,q=8lx) occur at the same temperature. The BG limit ( order phase transitions: paramagnetferromagnetic and ferro-
=0) is shown by the dashed line. magnetie>weak-ferromagnetic. The tricritical point is located in

(BIrc=4, kc=2.
ues ofBJ, the leading behavior of the order parameter takes

finite values independent df, and tends to 1/2 whepBJ =kJ2). This is the reason why the magnetization in the

—8/k by the lower values. weak-ferromagnetic phase decreases when the temperature is
At low temperatures, 8J>8/k, the quantities [1 lowered.

—(BIkI2) 5?1~ V*=1 diverge for finite values of; smaller As we have seen above, the energy at constant volume in

than 1/2, and the value ofi, is dominated by the behavior of the BKM may be written as a function of the squared order

the integrand near this divergency. In this case, parameter. This allows us to write the averaged energy as

= \J2/(BI«), since the order-parameter probability distribu- Uq=—JNNE/2. The specific heat at constant mass and con-

tion collapses into the two Dirac distributions. Moreover, if stant volume is the derivative &f, with respect to the tem-

BJ tends to 8k by larger values, the limit ofn, values is  perature, keeping the mabkand the coupling fixed:

1/2. This implies that if«>2/(1—2/N), then the averaged 5

order parametem, has a discontinuous jump at the critical Cq_ (BI)? ~ omy

temperature gJ). o= 8/x between the small value of order ks 2 ABI)"

1/yN and 1/2. Otherwise, ik<2/(1—2/N), thenm, is con-

tinuous but its first temperature derivative becomes disconFrom the above discussion, it is clear that there is a finite

tinuous at this critical temperaturgg) ,=8/«, leading to  discontinuity of the specific heat when<2/(1—2/N). But,

the second-order critical phenomenon. Both behaviors arthere exists also a true divergence@f for the temperature

exemplified in Fig. 1. The tricritical point(B8J)rc=4.k1c  (BJ)cq=8/k when k=2/(1—-2/N), even if the system is

=2] separates the phase boundary line in transitions of diffinite.

ferent naturédiscontinuous/continuoiilsOne of the continu- There is some eviden¢é7] supporting the fact that long-

ous phase transitions is the simple continuation of the wellrange attractive interactions lead ¢e<1. We believe it is

known paramagnetie> ferromagnetic transition for the BG very important to stress that long-range repulsive interactions

statistics, while the other one is a second-order phase transiray lead to nonextensivity witly>1. The fact that the

tion (ferromagnetic= weak-ferromagnetjcdue to the pres-

ence of the long-range repulsive correlations/memory ef- Gk

fects. 500
Since the above limiting temperatures and OE parameters

do not depend on the ma$$ (the number of spins the

pattern of different behaviors of the order-parameter remains

unchanged in the thermodynamic limii{ ) and one may 250

draw the phase diagram8J—« (x>0) (see Fig. 2 The

(13

first-order phase transition in the generalized BK(ihe K=K, /2
bold-face solid line in Fig. R remains unaltered in small 0
systems, unlike the case of regular collective critical phe-

nomena. The additional phase appearing on this diagram is 0 4 8 BJ 12

due to the long-range nonextensive correlations that tend to

disorganize spin coherence. This phase is called the weak- FiG. 3. Plots of the specific heat in the infinite-range BKM (
ferromagnetic state, because the order parameter in this stat&so) for: x=«, [the divergence at&J)c.q=8/k], and k= «./2
has a positive value, but this value is lowered by the disrupfthe jump at 8J). ,=8/«]. The BG limit (x=0) is shown by the
tive long-range correlationgsee Fig. 1 in the casex dashed line.
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present system undergoes two different second-order phasesakly orderedweak-ferromagneticphase, passing through
transitions in the regiorg>1 is very remarkable. On the the phase boundary in the discontinuous transition. For a
other hand, in this system, the fundamental parameter ifixed value of the OE parameter, the thermodynamic limit
N(g—1) instead ofg. This is a result in nonextensive phys- (N—«,q—1—0.) of the spin system differs from its BG
ics(See Fig. 3 limit. The nonextensivity shields the system from the con-
In conclusion, we have shown that the spherical spirtinuous disordes order phase transition and suggests that, in
model with long-range correlations/memory effects simu-general, the second-order critical phenomena may be un-
lated in the framework of nonextensive thermostatistics, destable in the presence of long-range repulsive correlations.
velops a weak-ferromagnetic phase in a subadditive entropyhis result puts in a different perspective the discussion of a
regime. An unusual first-order phase transition, which exhib“critical behavior” in collisions of atomic nuclei or atomic
its discontinuity of the order parameter even in finite sys-clusters, showing that the observed signals correspond pos-
tems, separates this phase from the standard paramagnediply to a different limiting behavior than previously sup-
phase. On the phase boundary line in the plgde-«x, we  posed.
have found the tricritical point separating the nature

(discontinuous/continuou®f the transition. Above a critical

value of the OE parameter, the spin system freezes into the We thank K. K. Gudima for stimulating discussions.
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